Safety-Critical Applications Built via Agile Discipline

Nancy Van Schooenderwoert
http://www.leanagilepartners.com/
nancyv@leanagilepartners.com

September 16, 2008

© Copyright 2008 Lean-Agile Partners, Inc.

Nancy V’s Background

- 15 years safety-critical systems experience
- 10 years agile team coaching
- 3 years agile enterprise coaching
- Industries: Aerospace, Medical Devices, Sonar Weaponry, Scientific Instruments, Financial Services
- Electrical Engineering and Software Engineering, embedded systems
Introduction

- We’ll cover these
 - Intersection of Safety-critical practices and Agile team practices
 - How “agile” and “discipline” go together
 - What real agile teams are doing now
- Not these
 - Complete safety-critical procedures
 - Various agile methodologies and frameworks

Questions welcome at any point!
Terminology

- Scrum
- XP (Extreme Programming)
- Iterations
- Stories
- Product Owner

Basics of Safety-critical Design (1)

- Terms [Ref. Levison]
 - Accident - An undesired and unplanned (but not necessarily unexpected) event that results in (at least) a specified level of loss
 - Incident - An event that involves no loss (or only minor loss) but with the potential for loss under different circumstances
 - Hazard - A state of a system (or an object) that, together with other conditions in its environment, will lead inevitably to an accident (loss event)
Basics of Safety-critical Design (2)

- List all possible hazards
- For each hazard, design a control
- Two traditional approaches
 - Freeze up-front (and trace all code to original requirements)
 - Ad Hoc

Problems of “Freeze Up-front”

- Risk: your requirements may be in conflict
- Risk: requirements may be incomplete
- Risk: hard to think of every possible hazard up front
- Risk: After risks & controls frozen, future changes defeat a control
Basics of Agile Discipline (1)

- Agile does not treat safety-critical s/w differently; all is max quality
- Agile’s great strength is time-to-market, and ability to hit moving targets
- How? By s/w practices that keep us grounded to tech reality; management practices that keep us continually in touch with customer’s needs

Basics of Agile Discipline (2)

- Characteristics of a healthy Agile system:
 - Tested working code at end of each iteration
 - Team routinely delivers all stories promised
 - Customer is routinely satisfied that stories meet their needs
- Result: Can make a commitment and keep it
- Note - agile teams typically achieve < 0.5 defects per function point [Ref "Newbies" paper]
Agile offers a 3rd pathway

- Neither Ad Hoc nor Freeze Up-front
- Not a compromise - better than ‘Freeze’
- Cut Requirements risks via:
 - Iterative customer involvement
 - Revisit Hazards & Controls each iter.
- Idea: Software that cannot be tested inexpensively and thoroughly is itself a hazard!

Part 2

1. Basics of Safety Design and Agile
2. Case Studies
3. Wrap Up
Case Study: Medtronic (1)

- Product: Programmer for implanted pacemaker/defibrillator

Case Study: Medtronic (2)

- Began using Agile (Scrum, some XP) in 2002
- Team of approx. 50 developers and testers
- 2-week iterations
- 15-36 months typical project length
- 4 agile projects run within past 5 years
- C++ several hundred thousand lines
Case Study: Medtronic (3)

- Bug rate - A few hundred in past 5 years
- All were minor except one that required field action
- Before Agile, same level of exterior quality, but took more effort to achieve
- Now far fewer bugs are found in QA
- FDA Regulators:
 - “Do your practices generate acceptable results?”
 - “Are they implemented within the context of a robust quality system?”

Case Study: Medtronic (4)

- Biggest changes from move to agile
 - Changing organization to short iterations (2 weeks)
- Most difficult changes
 - Getting comfortable with the agile culture --
 - “Agile teams are highly disciplined but it’s a different kind of discipline. Instead of command & control agile relies on the discipline of teams to commit to their product and process.”
 - “Agile for us is less of a switch from bad to good, and instead it lets you turn up the knobs on the good. We need a system that allows engineers to think.”
Case Study: M2S Inc. (1)

- Two Products using agile methods:
 - PEMS - (Patient Evaluation and Management System) is now the largest radiologically-based registry in the world, by a factor of 10.
 - Preview - treatment planning software

Case Study: M2S Inc. (2)

- Began using Agile (Scrum) at the end of 2007
- 6 developers and a couple QA people, but 8 projects of 1 to 4 people each, all co-located
- We are now all working off of one unified, prioritized backlog feeding all our projects.
- 4 week iterations, but want to shorten
- Mix of Perl, Java, Tcl, C, SQL
Case Study: M2S Inc. (3)

- Changing project mix
- Team composition shifts for each iteration
- Friday standup meeting includes all

Project Mix

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
</table>

Unified Product Backlog

Case Study: M2S Inc. (4)

- Biggest impact of agile
 - Clarity on our priorities!
 - New prioritization process is fair and open, overseen by SVPs and CEO
 - Relationships are a company asset

- Most Difficult changes
 - Stakeholders all wanted to “own” a developer, but all now prefer new way
 - Managers received Agile mgmt training
Case Study: Major Euro… (1)

- Products:
 - Medical imaging archive software
 - Radiology office workflow management software
 - Platform to use imaging to create measurements and 3D renderings
- Using Scrum for 1.5 years, some XP practices
- 4 week iteration length
- Using retrospectives, daily stand-up meeting, ‘test first’ or in parallel (for unit testing)
- Team size: 500 - 600, 3 continents; 8M lines C++
- One code base worldwide, staged multi-level builds

Case Study: Major Euro… (2)

- Biggest impact of move to agile
 - Moving to 4-week iterations
 - Better understanding of our requirements
 - Quality impact data not available yet, but confident of improvements
Case Study: Major Euro… (3)

- Most Difficult changes
 - Changing the organization, leap of faith
 - Accepting our early failures and re-trying
 - Getting process tailored to us and documented for regulators (FDA, ISO)

Case Study: Major Euro… (4)

- Safety-critical software improved by:
 - Fast feedback - know if we broke anything
 - Can adapt without safety compromises
 - Easier for customer to commit to small feature sets
 - Modular traceability “trees” originating with each hazard are more manageable
Part 3

1. Basics of Safety Design and Agile
2. Case Studies
3. Wrap Up

Implications

- More than one way to cover “Product Owner” role
 - Top product owner plus feature-set owners
- How Project Manager role is changing
 - “Disintermediation” of customer-team communications
Observations

- Lack of metrics just shows:
 - "For those who believe, no proof is necessary; For those who do not believe, no proof is possible." – anonymous
 - If Agile is so good why isn’t everyone using it?

Recommendations

- Avoid having to compete against a truly agile company!
- ……..Hint: Get there first
- Smaller companies shift to agile more easily – less inertia
- Larger companies usually need help - org change in combo with lean-agile is a very difficult thing to do on “moonlighting” basis
- Prediction: Brain drain toward agile companies
Resources

Books
- ‘Safeware’ by Nancy G. Leveson
- ‘Software Configuration Management Patterns’ by Steve Berczuk
- ‘Implementing Lean Software Development’ by Mary and Tom Poppendieck
- ‘User Stories Applied’ by Mike Cohn

- The Four Pillars of Agile Adoption
- Embedded Agile Project by the Numbers with Newbies

Contact: nancyv@leanagilepartners.com

Upcoming Presentations

Planning Your Agile Initiative
http://www.sdbestpractices.com/

Embedded Agile Development Techniques
Half day tutorial, Great Lakes Software Excellence Conference, Grand Rapids MI, Nov 4-5, 2008
http://www.glsec.org/