

 Software design/development

consultant in Bedford, MA

 Lotus/IBM previous to consulting

 Instructor of software engineering at BU

 Author of recent book Beautiful Software

› Topics related to this talk and other issues

› Two giveaways

 A problem in software engineering

 What SEMAT is and how they are trying

to solve the problem

 An example from my work, in the spirit of

SEMAT

 Analysis: SEMAT successes and warnings

 “Software engineering is gravely hampered today by
immature practices. Specific problems include:

› The prevalence of fads more typical of fashion industry than of

an engineering discipline.

› The lack of a sound, widely accepted theoretical basis.

› The huge number of methods and method variants, with
differences little understood and artificially magnified.

› The lack of credible experimental evaluation and validation.

› The split between industry practice and academic research. “

 Do you agree? Feedback from roundtable?

 Fads
› Structured A/D (1980), CMM (1990), object

oriented A/D (1995), open source (2000),
agile (2005), more…

 Freebie: who wrote seminal book on SD?

 Method overload
› CMM vs. ISO 9126 RAD vs. agile

› Key similarities, differences?

 Lack of theory
› Why does refactoring work?

 Credit to Sarah Sheard in Evolution of the

Frameworks Quagmire.

 2001/2003, but still relevant

PSP

IEEE/EIA

12207

Baldrige

ISO/IEC

15504

People CMM

IPD-

CMM*

SECAM

SCE

MIL-STD-

498

DOD-

STD-

2167A

MIL-STD

499B*

ISO/IEC

12207
IEEE

1220

SDCE

SE-CMM

EIA

731

EIA/IS

632

ISO 9000

series

Ansi/EIA 632

SSE-

CMM

ISO/IEC 15288

CMMI

SA-

CMM

Q9000

DOD-

STD-

2168

FAA-

iCMM#

RTCA

DO-178B

SW-CMM

TL9000

ISO

15939

PSM

SCAMPI

CBA IPI

SAM

FAM**

Process Stds

Quality Stds
Maturity or

Capability

Models
Appraisal

methods
Guidelines

Six

Sigma

J-STD

016

DOD-

STD-

7935A TSP

The Frameworks Quagmire

 Software Engineering Method and
Theory

 Organization dedicated to fixing these
problems

 Started in 2009 with 3 articles in DDJ by
Ivar Jacobson, Bertrand Meyer and
Richard Soley

 Now 30 famous people + 15 major
institution “signatories”, and 1600
“supporters”

 “We support a process to re-found software
engineering based on a solid theory, proven
principles and best practices that:

› Include a kernel of widely-agreed elements, extensible for

specific uses

› Addresses both technology and people issues

› Are supported by industry, academia, researchers and
users

› Support extension in the face of changing requirements
and technology”

All of SWE expressible from…

Methods

Patterns Practices

Kernel: universals + language

 Describe all current SWE methods with a
common language and concepts

 Know that ABC method is a superset of
XYZ

 Know that ISO-1234 just a restatement of
CMM-AB

 Easily describe new process for new
situation

 Like discovery of DNA and the A-T-C-G
language of genetics!

 But what could SEMAT look like in

practice?

 A possible example, from my own work…

 Goal is universal sw design principles

› Could serve as foundation for all

analysis/design methods

 Freebie: what is source code

refactoring?

› Hint: two key aspects

 temp = 2 * (_height + _width); ‘perimeter

System.out.println (temp);

temp = _height * _width; ‘area

System.out.println (temp);

› What is the problem(s) with this code?

› Solution: Split Temporary Variable

 perimeter = 2 * (_height + _width);

System.out.println (perimeter);

area = _height * _width;

System.out.println (area);

 Programmers have been tweaking code

since 1950.

 Disciplined, correct refactoring has at

least three benefits.

› Successive, small changes can produce BIG

improvements.

› Lightens the load on design phase.

› More realistic design phase.

› (Latter two support agile methods.)

 Unanswered questions…

1. When should you refactor?

 When is source code “not good” so it needs

improvement?

2. Which refactoring method to use?

 At least 70, several for each case.

 Some contradict each other.

3. Why is the change an improvement?

 No explanation for what is happening.

 Summarizing thousands of pages of
research…
1. A section of source code should be refactored

when it “smells bad.”

2. We should apply the refactoring that helps with
this smell.

3. No one knows.

 We need a theory of refactoring.
› What is refactoring?

› Why does some code smells bad?

› Why does refactoring make code better?

 7 universal principles of good sw design
› Cooperation. Work well with its surrounding

environment.

› Appropriate form. Form follow function.

› Minimality. As small as it can be.

› Singularity. Contain one instance of each
component.

› Locality. Place related items together.

› Visibility. Built-in clarity plus comments.

› Simplicity. Solve its problems in the simplest
manner possible.

 This theory answers the open questions

1. You should refactor when one/more of the

7 tenets are broken.

2. Use the transformation that most easily
reestablishes good design where it is

currently broken.

3. Refactoring works by bringing software

more in line with 7 principles.

 There are not 70 transformations, there

are only 7!

› The 7 can be combined in various ways.

› By Occam’s Razor, this is much better.

 In the spirit of chemistry and physics.

› Substances  elements  particles.

 Predicts new transformations.

› The best way to test any theory.

 Needs evidence and arguments.

 Could be improved over time.

 But is within the spirit of SEMAT by offering

an overall theory of software design .

 There is a clear problem.
 Solution would obviously be useful

 Many important people are behind the effort
 Lots of “working together”

 Have had 3 int’l conferences, each with report
 Broken into 6 tracks

› Requirements

› Universals

› Assessment

› Theory
› Kernel language

› Definitions

› Architecture (spike)

 Goal is to improve practice not just create abstract
results

 Foundation (kernel + language) acceptance
transferred to OMG in June 2011
› So SEMAT is not voting on its own work

› SEMAT is now one org that can propose solutions for
problem it defined

 20 people working on kernel since March 2010.
› 8 universals proposed: opportunity, stakeholder

community, requirement, software system, work,
team, method, practice

 Want to remove split between process nazies and
programmers
› Good!

 Lots of discussion, few results

› 1p problem statement  20p vision  44p

RFP

 RFP actually a step backwards

› It is a “request for” a result, not a proposal

 Could become more jargon on top of

existing jargon
 … a “method” must be enactable, while a “practice” in isolation will in general not be. In the context

of this RFP, the enactment of a method can be defined as the carrying out of that method in the

context of a specific project effort. Within this context, the practices within the method may be

considered use cases for the work that must be carried out to achieve the project objectives, with

each practice providing a specific aspect of the overall method.

 Need to watch for agile bias
 Agile is FOTM, something else in 2020

 SEMAT must define earlier flavors and next

 Need to watch for cult of personality
› Trumpet names/# of famous signatories

› But science is about evidence, prediction,
internal consistency; doesn’t matter who
says it

› History of science shows famous people are
wrong about the next breakthrough

 This has all been tried before!

› System Process Engineering Meta-Model (SPEM)

› ISO/IEC 24744

› Eclipse Process Framework

› Software Engineering Body of Knowledge

(SWEBOK)

› Unified Method Framework

› More….

 The RFP says each is inadequate

› Worth a raised eyebrow though

 Questions?

 Comments?

 SEMAT home page
› semat.org

 SEMAT vision statement
› www.semat.org/pub/Main/WebHome/SEMAT-

vision.pdf

 SEMAT blog
› sematblog.wordpress.com/

 My home page
› chc-3.com

 My book, including these issues
› www.amazon.com/dp/1456438786/

http://www.semat.org/
http://www.semat.org/pub/Main/WebHome/SEMAT-vision.pdf
http://www.semat.org/pub/Main/WebHome/SEMAT-vision.pdf
http://www.semat.org/pub/Main/WebHome/SEMAT-vision.pdf
http://sematblog.wordpress.com/
http://sematblog.wordpress.com/
http://www.chc-3.com/
http://www.chc-3.com/
http://www.chc-3.com/
http://www.amazon.com/dp/1456438786/
http://www.amazon.com/dp/1456438786/

